
International Journal of Advanced Smart Convergence Vol.11 No.1 28-35 (2022)

http://dx.doi.org/10.7236/IJASC.2022.11.1.28

Copyright© 2022 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of
the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Performance Evaluation of Real-time Linux for an Industrial Real-time

Platform

Yong Hwan Jo1, Byoung Wook Choi2*

1M.S., Department of Electrical and Information Engineering, Seoul National University of
Science and Technology, South Korea

2*Professor, Department of Electrical and Information Engineering, Seoul National University of
Science and Technology, South Korea

1jyh159@seoultech.ac.kr, 2*bwchoi@seoultech.ac.kr

Abstract

This paper presents a performance evaluation of real-time Linux for industrial real-time platforms. On

industrial platforms, multicore processors are popular due to their work distribution efficiency and cost-

effectiveness. Multicore processors, however, are not designed for applications with real-time constraints, and

their performance capabilities depend on their core configurations. In order to assess the feasibility of a

multicore processor for real-time applications, we conduct a performance evaluation of a general processor

and a low-power processor to provide an experimental environment of real-time Linux on both Xenomai and

RT-preempt considering the multicore configuration. The real-time performance is evaluated through

scheduling latency and in an environment with loads on the CPU, memory, and network to consider an actual

situation. The results show a difference between a low-power and a general-purpose processor, but from

developer's point of view, it shows that the low-power processor is a proper solution to accommodate low

power situations.

Keywords: Xenomai, RT-preempt, General processor, Low-power processor, Multicore configuration

1. Introduction
Advances in computers and semiconductors have led to breakthroughs in control devices and processors.

As systems become more complex, however, the workload of the processor also increases. Accordingly, the

use of multicore processors in various fields, such as general computing, robotics, control systems, and

artificial intelligence, has become common [1-2]. The use of multicore processors brings advantages such as

better work efficiency, lower power consumption, reduced heat generation, and lower prices [3].

The parallel computing of multicore processors is designed to satisfy tasks that do not require time

constraints. However, real-time systems are defined by strict time constraints on tasks and processes.

Commercial real-time operating systems (RTOS) such as VxWorks and Nucleus provide real-time scheduling

solutions on multicore processors. However, RTOS are generally distributed as libraries and have

disadvantages such as license and royalty costs, as well as technology dependence [4].

IJASC 22-1-4

Manuscript Received: January. 14, 2022 / Revised: January. 20, 2022 / Accepted: January. 24, 2022
Corresponding Author: bwchoi@seoultech.ac.kr
Tel: +82-2-970-6412, Fax: +82-2-970-9732
Professor, Department of Electrical and Information Engineering, Seoul National University of Science and Technology, South Korea

International Journal of Advanced Smart Convergence Vol.11 No.1 28-35 (2022) 29

Open-source software can overcome these disadvantages. Many efforts have been made in the community

to ensure real-time performance on Linux, the most commonly used open-source operating system. In general,

real-time Linux can be categorized depending on whether a dual-kernel approach or a fully preemptive kernel

approach is used [5].

The dual-kernel approach uses a common kernel architecture in which the real-time kernel runs alongside

standard Linux through an adaptive domain environment for operating systems (ADEOS). In this architecture,

the real-time kernel has the highest priority. A standard Linux task can be executed only when there is no real-

time execution queue, and RTAI and the Xenomai project are representative dual-kernel approaches [6-8].

A fully preemptive kernel approach uses an architecture that manages all tasks in a single real-time kernel.

A typical example is RT-preempt, which expands the normal Linux kernel to a fully preemptive kernel via a

real-time patch that includes modifications to the timer and scheduler. In terms of real-time implementation,

RT-preempt is a single real-time Linux kernel. Accordingly, it has the advantage of easy extensibility because

Linux-based libraries can be used. However, there is a disadvantage in that the performance changes depending

on the version [9].

Although multicore processors have become common, real-time scaling does not support real-time

scheduling for multicore processors. Because there is no real-time scheduler considering task migration in

multicore processors, many studies have isolated specific cores and attached real-time tasks to the isolated

cores or have disabled all physical and logical cores to mimic a single-processor system. Previous studies

showed a change in real-time performance due to the use of C-state, hyperthreading, multicore and CPU

isolation in a low-power dual-core processor [10]. However, in real-time applications with mobility, a low-

power processor is often used. Therefore, a real-time performance analysis is required not only in general

processors but also in low-power processors. During the effort to achieve this requirement, however, real-time

performance according to the multicore distribution in a low-power processor was not considered in previous

studies. A real-time performance analysis is conducted both on Xenomai for the dual-kernel architecture and

fully preemptive RT-preempt for the single kernel. With regard to experimental conditions, an analysis was

also performed between a general processor and a low-power processor in an environment with experimental

loads for CPU, memory, and network tasks.

The paper aims to present indicators through a performance evaluation of real-time characteristics so that

developers who aim to implement industrial real-time applications can properly choose a processor and real-

time Linux. Xenomai and RT-preempt with real-time Linux with a multicore distribution on Intel multicore

processor-based systems are considered. A real-time performance analysis is conducted between a general

processor and a low-power processor on both architectures. As multiple cores are used and hardware

performance capabilities are increasing, the real-time performances of the two architectures tested here differ.

Therefore, the results present a useful guideline for applications, especially real-time control applications.

2. Real-time Linux Implementation

The Linux kernel was originally developed for Intel-based processors. For a comparison with the results in

earlier work, an i7-6700 octa-core processor of the same generation as the processor in that study was used.

The i7-6700 consists of four physical cores and four logical cores running at 4.00 GHz. Table 1 shows the

specifications of the processor. By using the identical sixth generation Intel i7, a real-time performance analysis

of a low-power processor and a general processor can be conducted. The two processors differ in terms of the

number of cores and threads, but the greatest difference is the thermal design power (TDP). This is the

maximum power used to cool the system as required to mitigate the heat inside the computer. To minimize the

impact of the integrated graphics controller, the multicore system used Lubuntu 18.04, a Linux distribution.

30 Performance Evaluation of Real-time Linux for an Industrial Real-time Platform

Linux 4.14.134, which is the most stable version, was selected.

Table 1. Processor Specifications

Heading level General processor Low-power processor

Processor Intel i7-6600 Intel i7-6600U

Cores 4 2

Threads 8 4

Processor base frequency 3.4GHz 2.6GHz

TDP 65W 15W

2.1 Xenomai

Xenomai is an interface for real-time tasks. Xenomai requires a hardware abstraction layer called ADEOS

to utilize Xenomai and the Linux kernel simultaneously to implement a dual-kernel environment [11]. In this

study, ipipe-core-4.14.134-x86-8 is used. Xenomai chose v3.1 as the most recent version in the GIT repository.

In order for the Linux kernel to be capable of real-time performance after patching with ADEOS, several kernel

options must be enabled/disabled.

Table 2. Xenomai Kernel Options

Kernel options Enable/Disable

HIGH_RES-TIMERS Enable

CONFIG_MCORE2 Enable

CONFIG_TRANSPARENT_HUGEPAGE Disable

CONFIG_COMPACTION Disable

CONFIG_CMA Disable

CONFIG_MIGRATION Disable

CONFIG_X86_SMAP Disable

CONFIG_CPU_FREQ Disable

CONFIG_ACPI_PROCESSOR Disable

CONFIG_INTEL_IDLE Disable

CONFIG_CPU_IDLE Disable

CONFIG_KGDB Disable

Power management is a critical factor related to latency in a real-time system and should be disabled. In

addition, the kernel debugging function is another cause of latency that affect real-time requirements. In

particular, the debugger KGDB function used to examine variables, the call stack information and the memory

usage all affect latency; accordingly, KGDB should be disabled.

After the above settings are completed, the subsequent steps are to compile and install. If the bootloader is

updated after compilation, the Xenomai development environment as shown in Figure 1(a) is built.

2.2 RT-preempt

RT-preempt patches the Linux kernel to support hard real-time tasks and fully preemptive scheduling. It

has the advantage of being able to use Linux-based libraries (e.g., ROS, IgH EtherCAT) [12-14].

The RT-preempt patch is in the Linux kernel repository. We use version 4.14.134-rt63, which compatible

International Journal of Advanced Smart Convergence Vol.11 No.1 28-35 (2022) 31

with the kernel used here. First, to make a fully pre-emptible kernel, CONFIG_PREEMPT_RT must be

enabled. It is also necessary to enable/disable the Intel processor, memory pages and power management

options, as described for Xenomai.

� Table 3. RT-preempt Kernel Options

Kernel options Enable/Disable

HIGH_RES-TIMERS Enable

CONFIG_MCORE2 Enable

CONFIG_SCHED_MC Disable

CONFIG_TRANSPARENT_HUGEPAGE Disable

CONFIG_CPU_FREQ Disable

CONFIG_ACPI_PROCESSOR Disable

CONFIG_INTEL_IDLE Disable

CONFIG_CPU_IDLE Disable

CONFIG_KGDB Disable

After the above settings are completed, the next steps are to compile and install. If the bootloader is updated

after compilation is completed, the RT-preempt development environment as shown in Figure 1(b) is built.

Figure 1. Real-time Linux architecture

2.3 Multicore deployment

There are numerous studies related to the effects of multicore configurations on the real-time performance

of the entire system [15-16]. It is said that a multicore architecture adversely affects the periodicity of real-

time tasks in RT-preempt. Also, in Xenomai, hyper threading was found to affect the real-time performance.

In a low-power processor, it is necessary to disable C-state, disable hyperthreading, enable the multicore option,

and enable CPU isolation. This leads to better results than in other multicore distributions [10].

3. Performance evaluation

In this article, we analyze the real-time performance capabilities of a general-purpose processor and a low-

power processor in terms of scheduling latency. Scheduling latency represents the difference between the task's

intended wake-up time and the actual wake-up time [17]. This is a consideration when designing real-time

tasks. To measure the scheduling latency, use the cyclictest benchmark tool. This benchmark requires that the

timer be calibrated to measure the ideal time in Xenomai. In Xenomai 3, we correct the gravity with the

correction tool autotune. Using the cyclictest benchmark, the cycle was set to 100us and the highest priority,

99, was assigned. Also, to prevent page errors, mlockall() was used, as was nanosleep. To ensure accuracy of

32 Performance Evaluation of Real-time Linux for an Industrial Real-time Platform

the experiment, measurements were taken for 100 seconds and 1,000,000 sufficient samples were obtained.

3.1 Idle environment

First, we gained the result when measuring the general processor in the absence of any task apart from the

cyclictest benchmark.

Figure 2. Histogram of scheduling latency in Xenomai (Idle)

The scheduling latency in Xenomai is displayed as a histogram, as shown in Figure 2. For Xenomai in the

idle environment, it shows a similar distribution for the general-purpose processor and the low-power processor.

In RT-preempt, the scheduling delay time is displayed as a histogram, as shown in Figure 3. For RT-preempt

in the idle environment, a similar distribution is found for the general-purpose processor and for the low-power

processor.

Figure 3. Histogram of scheduling latency in RT-preempt (Idle)

Table 2. Scheduling Latencies of Xenomai and RT-preempt in an Idle Environment

Xenomai(us) RT-preempt(us)

General Low-power General Low-power

AVG 2.9177 2.9597 2.1393 2.8404

MAX 8.849 20.878 19.128 40.857

MIN 0.0532 0 0.1482 0.1925

STD 0.1372 0.1481 0.1696 0.2101

Table 2 shows the average, maximum, minimum, and standard deviation of the measured scheduling delay

International Journal of Advanced Smart Convergence Vol.11 No.1 28-35 (2022) 33

in the idle environment. For Xenomai in the idle environment, an average time of 2.9177us and standard

deviation 0.1372us were found for the general-purpose processor, and an average time of 2.9597us and

standard deviation of 0.1481us were found for the low-power processor. In the RT-preempt case, the average

time was 2.1393us and the standard deviation was 0.1696us with the general-purpose processor. The

corresponding outcomes were 2.8404us and 0.2101us for the low-power processor.

3.2 Stress environment

To establish an environment suitable for industrial controllers, the scheduling delay time is measured in an

environment affected by a load. The impact of the load was considered for CPU, memory, and network

operations.

Here, stress-ng is used to load the CPU and memory, providing an extensive CPU-specific stress test in a

very tight infinite loop. It was set to provide a 100% load to the CPU and to use 70% of the system memory.

For network operation, iperf is used. iperf runs as a server and client architecture. In this experiment, the

real-time system acts as a server connected to another PC. By simulating 100 clients each requesting 64KB of

data from the load generator, we obtain throughput of 1Mbps/client.

Figure 4. Histogram of scheduling latency in Xenomai (Stress)

Figure 5. Histogram of scheduling latency in RT-preempt (Stress

34 Performance Evaluation of Real-time Linux for an Industrial Real-time Platform

Table 3. Scheduling Latencies of Xenomai and RT-preempt in a Stressed Environment

Xenomai(us) RT-preempt(us)

General Low-power General Low-power

AVG 3.1005 3.4234 2.8976 3.1002

MAX 11.922 50.626 27,065 37.212

MIN 0.0515 0.024 0.1487 0.1998

STD 0.5372 0.6836 0.5537 0.5596

The scheduling latency in Xenomai and in RT-preempt is displayed as a histogram in Figure 4 and 5,

respectively. And Table 3 shows the average, maximum, minimum, and standard deviation of the measured

scheduling latency in a stressed environment. For Xenomai in a stressed environment, an average time of

3.1005us and standard deviation of 0.5372us were found for the general-purpose processor, while an average

time of 3.4234us and standard deviation of 0.16836us were measured for the low-power processor. In the RT-

preempt case, an average time of 2.8976us and standard deviation of 0.5537us were found on the general-

purpose processor, while an average time of 3.1002us and standard deviation 0.5596us were measured for the

low-power processor.

4. Conclusion

In this paper, we presented performance evaluation results for real-time industrial applications when

choosing a processor and real-time Linux. To help with processor selection, real-time performance evaluations

of the low-power processor and the general processor were conducted. The Xenomai and RT-preempt

architectures were adapted for the real-time Linux architecture. The evaluation was also performed in idle and

stressed environments to verify that the controller operates stably even in real environment.

As shown in Table 1, the general-purpose processor has better computing power than the low-power

processor in terms of the number of cores, the number of threads, and the processor frequency. The

experimental results also show that the general-purpose processor outperforms the low-power processor.

However, for real-time application of Xenomai in an idle environment, the average latency of them were nearly

identical, with only a 0.01us difference in the standard deviation. In the RT-preempt case, the mean differs by

0.7us and the standard deviation differs by 0.4us. In a stressed environment, the average latency for both of

Xenomai is identical at 0.3us, and the standard deviation of both is 0.15us. In the RT-preempt case, the mean

values for both cases are the same as 0.2us and the standard deviation is nearly identical as well.

In general, the real-time tasks used in industry operate with periodicity of 1 ms or more [10, 18]. In such

applications, a time of less than 1us does not significantly affect the real-time performance. Therefore, even if

the specifications of the low-power processor are lower than those of the general-purpose processor, the former

can be used real-time applications considering deterministic tasks.

In conclusion, this paper provides very useful design parameters by comparing and analyzing the real-time

performance capabilities of both processors when implementing an industrial real-time platform through

various experiments. Low power has become a very important design specification for a mobile controller, and

accordingly this paper shows useful results for real-time applications when considering battery consuming.

Acknowledgement

This work has been financially supported by SeoulTech (Seoul National University of Science and
Technology).

International Journal of Advanced Smart Convergence Vol.11 No.1 28-35 (2022) 35

References

[1] D. Cho, “A Study on Effect of Code Distribution and Data Replication for Multicore Computing Architectures,”

International Journal of Advanced Culture Technology, vol. 9, no. 4, pp. 282–287, Dec. 2021.

DOI: https://doi.org/10.17703/IJACT.2021.9.4.282.

[2] S.-H. Jeon, C.-G. Lee, J.-D. Lee, B.-S. Kim, and J.-M. Kim, “Implementation of AIoT Edge Cluster System via

Distributed Deep Learning Pipeline,” International journal of advanced smart convergence, vol. 10, no. 4, pp. 278–

288, Dec. 2021.

DOI: https://doi.org/10.7236/IJASC.2021.10.4.278.

[3] G. Kronaros. Multi-Core Embedded Systems, CRC Press, Boca Raton, 2010.

[4] Real-time-operating-system-rtos, https://www.geeksforgeeks.org/real-time-operating-system-rtos/

[5] T .Bijlsma, M. Kwakkernaat, M. Mnatsakanyan, “A real-time multi-sensor fusion platform for automated driving

application development,” IEEE 13th Int. Conf. Ind. Inform. (INDIN) pp. 1372–1377, Jul. 2015,

DOI: https://doi.org/10.1109/INDIN.2015.7281935.

[6] RTAI ,http://www.rtai.org.

[7] Xenomai, https://xenomai.org/

[8] J.H. Koh, B.W. Choi, “Performance Evaluation of Real-time Mechanisms for Real-time Embedded Linux,” Journal

of Institute of Control Robotics and Systems, vol. 18, no 4, p. 337-342, Apr. 2012.

DOI: https://doi.org/10.5302/J.ICROS.2012.18.4.337.

[9] G. K. Adam, N. Petrellis, and L. T. Doulos, “Performance Assessment of Linux Kernels with PREEMPT_RT on

ARM-Based Embedded Devices,” Electronics, vol. 10, no. 11, p. 1331, Jun. 2021,

DOI: https://doi.org/10.3390/electronics10111331.

[10] R. Delgado and B. W. Choi, "New Insights Into the Real-Time Performance of a Multicore Processor," in IEEE

Access, vol. 8, pp. 186199-186211, 202.

DOI: https://doi.org/10.1109/ACCESS.2020.3029858.

[11] Life with Adeos, https://xenomai.org/documentation/branches/v2.4.x/pd f/life-with-adeos.pdf

[12] J. Park, R. Delgado and B. W. Choi, "Real-Time Characteristics of ROS 2.0 in Multiagent Robot Systems: An

Empirical Study," in IEEE Access, vol. 8, pp. 154637-154651, 2020.

DOI: https://doi.org/10.1109/ACCESS.2020.3018122.

[13] M. Cereia, I. C. Bertolotti and S. Scanzio, "Performance of a Real-Time EtherCAT Master Under Linux," in IEEE

Transactions on Industrial Informatics, vol. 7, no. 4, pp. 679-687, Nov. 2011.

DOI: https://doi.org/10.1109/TII.2011.2166777.

[14] J. Kim and C. Moon, “A Robot System Maintained with Renewable Energy,” International journal of advanced

smart convergence, vol. 8, no. 1, pp. 98–105, Mar. 2019.

DOI: https://doi.org/10.7236/IJASC.2019.8.1.98.

[15] Litayem, Nabil, and S. Ben Saoud. "Impact of the linux real-time enhancements on the system performances for

multi-core intel architectures." International Journal of Computer Applications 17.3 (2011): 17-23.

DOI: https://doi.org/10.5120/2202-2796.

[16] C. Garre, “ Performance comparison of real-time and general-purpose operating systems in parallel physical

simulation with high computational cost,” SAE Technical Paper, No. 2014-01-0200. 2014.

DOI: https://doi.org/10.4271/2014-01-0200

[17] F. Cerqueira and B. Brandenburg. "A comparison of scheduling latency in linux, preempt-rt, and litmus rt." 9th

Annual workshop on operating systems platforms for embedded real-time applications. SYSGO AG, 2013.

[18] D.S. Lee and H.J. Ahn, “Real-Time Characteristics Analysis and Improvement for OPRoS Component Scheduler on

Windows NT Operating System,” Journal of Institute of Control, Robotics and Systems, vol. 17, no. 1. Institute of

Control, Robotics and Systems, pp. 38–46, Jan, 2011.

DOI: https://doi.org/10.5302/J.ICROS.2011.17.1.38

